

United States Patent [19]

Walters et al.

4,267,212

4,587,139

5,080,946

5,122,435

5.188.863

5,837,319 **Patent Number:** [11]

Nov. 17, 1998 **Date of Patent:** [45]

[54]	SPIN PRO	OCESS FOR HIGHLY CONFORMAL GS
[75]	Inventors:	David W. Walters, Walworth; Susan S. Collier, LeRoy, both of N.Y.
[73]	Assignee:	Eastman Kodak Company, Rochester, N.Y.
[21]	Appl. No.:	670,983
[22]	Filed:	Jun. 28, 1996
Related U.S. Application Data		
[63]	Continuation doned.	1 of Ser. No. 359,371, Dec. 20, 1994, aban-
[51]	Int. Cl. ⁶	B05D 3/12
[52]	U.S. Cl	
[58]	Field of So	earch
[56]		References Cited

U.S. PATENT DOCUMENTS

4,175,145 11/1979 Fechter 427/240

4,353,937 10/1982 Chiba et al. 427/130

4,551,335 11/1985 Ericson et al. 427/48

5/1981 Sakawaki 427/240

5/1986 Hagan et al. 427/130

1/1992 Takagisi et al. 428/64

6/1992 Schmitt et al. 430/270

2/1993 de Graaf 427/240

AL	5,199,988 4/1993 Kamezaki et al 118/52			
	5,405,813 4/1995 Rodrigues			
	5,571,560 11/1996 Lin			
ı S.	FOREIGN PATENT DOCUMENTS			
	62-109043 5/1987 Japan .			
ter,	OTHER PUBLICATIONS			
	"Mechanism for the Local Planarization of Microscopically			
	Rough Surfaces by Drying Thin Films of Spin-Coated Polymer/Solvent Solutions", Journal of Electrochemical			
	Society, vol. 137 (1990) (no date).			
	Principles of Optical Disc Systems, pp. 114 and 115 (no			
	date).			

Attorney, Agent, or Firm-Arthur H. Rosenstein

ABSTRACT [57]

Primary Examiner—Janyce Bell

A substrate is rotated at a first bead of less than or equal to 500 rpm per second. A coating composition solution is applied to the substrate at this point. The substrate is then accelerated at a first rate of between 300 and 1200 rpm per second. When the speed of the substrate reaches approximately 3000 rpm per second, a second acceleration is initiated at a second rate of greater than or equal to 3000 rpm. The coating composition is set and the substrate is decelerated. This process provides a more conformal coating of the composition providing better push-pull unwritten variability.

4 Claims, 5 Drawing Sheets